
Albany: Using Component-Based Design to Develop a
Flexible, Generic Multiphysics Analysis Code

Andrew G. Salinger, Roscoe A. Bartlett, Andrew M. Bradley,
Qiushi Chen‡, Irina P. Demeshko, Xujiao Gao, Glen A.
Hansen, Alejandro Mota, Richard P. Muller, Erik Nielsen,
Jakob T. Ostien, Roger P. Pawlowski, Mauro Perego, Eric T.
Phipps, Waiching Sun§, Irina K. Tezaur,
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318

E-mail: agsalin@sandia.gov

Abstract.
Albany is a multiphysics code constructed by assembling a set of reusable, general

components. It is an implicit, unstructured grid finite element code that hosts a set of
advanced features that are readily combined within a single analysis run. Albany uses
template-based generic programming methods to provide extensibility and flexibility;
it employs a generic residual evaluation interface to support the easy addition and
modification of physics. This interface is coupled to powerful automatic differentiation
utilities that are used to implement efficient nonlinear solvers and preconditioners, and
also to enable sensitivity analysis and embedded uncertainty quantification capabilities
as part of the forward solve. The flexible application programming interfaces in Albany
couple to two different adaptive mesh libraries; it internally employs generic integration
machinery that supports tetrahedral, hexahedral, and hybrid meshes of user specified
order.

We present the overall design of Albany, and focus on the specifics of the integration
of many of its advanced features. As Albany and the components that form it are
openly available on the internet, it is our goal that the reader might find some of
the design concepts useful in their own work. Albany results in a code that enables
the rapid development of parallel, numerically efficient multiphysics software tools.
In discussing the features and details of the integration of many of the components
involved, we show the reader the wide variety of solution components that are available
and what is possible when they are combined within a simulation capability.

Keywords: Partial differential equations, finite element analysis, template-based generic
programming.

‡ Current affiliation: Clemson University, Department of Civil Engineering
§ Current affiliation: Columbia University, Department of Civil Engineering and Engineering
Mechanics

The Albany Multiphysics Code 2

1. Introduction

In this paper we present the Albany multiphysics code; a parallel, unstructured-grid,
implicit, finite element application aimed at the solution of a wide variety of physics
problems. Albany was developed to demonstrate the potential of a component-based
approach to scientific application development. This approach, which we will discuss
in detail in this paper, is to make broad use of template objects, computational science
libraries, abstract interfaces, and software engineering tools. By making extensive use
of flexible external capabilities, the application code development effort can remain
focused on supporting physics models and analysis features but yet have full access to
advanced supporting algorithms, each written by domain experts, where the cost of
verification and maturation are amortized over many projects. While every application
uses external libraries in its development, Albany takes module re-use to an extreme. We
view the Albany code base as glue code that integrates dozens of external components
and capabilities.

Albany is an open-source development project; the code is available on
GitHub (http://gahansen.github.io/Albany). All of the capabilities described
here are supported using publicly available components, many of which come
from the Trilinos (Heroux et al., 2005) multiphysics code development framework
(http://trilinos.org). Some mesh capabilites are delivered by the Parallel
Unstructured Mesh Infrastructure (PUMI) (Seol et al., 2012)code under development
by the Scientific Computation Research Center (SCOREC) at Rensselaer Polytechnic
Institute (RPI) and includes sophisticated parallel adaptation and load balancing
capabilities. Albany has a generic discretization interface; it simultaneously supports
PUMI and the Sierra ToolKit (STK) infrastructure (Edwards et al., 2010) that is the
basis of the Sierra Mechanics analysis code suite (Stewart and Edwards, 2003) developed
by Sandia. STK is a package within Trilinos.

By using the component-based strategy, Albany demonstrates the breadth of utility
that can be assembled into a single application as well as the ease of integration of new
models and capabilities into a code that follows this design approach. Albany supports a
generic physics interface that is based on the evaluation of a residual function. While the
abstraction of the residual function is a common design pattern in implicit codes that
employ Jacobian-free solution methods, Albany’s evaluation state is templated using
a generic ScalarT type. This design feature directly supports the use of automatic
differentiation (supplied by the Trilinos Sacado package (Phipps, 2015a)) to efficiently
form an “analytic” Jacobian for Newton’s method, in addition to providing capabilities
for forming the Jacobian numerically using finite-differencing and the use of Jacobian-
free approaches. The use of automatic differentiation can be significantly more efficient
than a matrix-free method for some problems (Chen et al., 2014b). Furthermore, the
combination of automatic differentiation with templated physics expressions directly
supports the formation of all manner of derivative information, that leads to powerful
sensitivity and other analysis capabilities (e.g., (Chen et al., 2014a)), as well as embedded

The Albany Multiphysics Code 3

uncertainty quantification (UQ) that will be described later in the paper. The availability
of mathematically correct sensitivities of physical quantities can substantially expedites
the development of scientific software over the expense of deriving and coding them by
hand. Finally, should a user prefer an alternative derivative form, such as an analytic
Jacobian derived using a symbolic process, one can readily employ it as a template
specialization to this generic machinery.

Albany uses the Trilinos Shards and Intrepid packages to represent the element
topology of the mesh, to locate integration points and subsequently integrate over the
elements. The Trilinos Phalanx package is a local field evaluation kernel that serves
as the basis of abstraction for physics evaluation. It uses template based generic
programming (TBGP) methods (Pawlowski et al., 2012a,b) to support arbitrary data
and evaluation types, and manages the dependencies between field producers and
consumers to allow expressing complex multiphysics coupling relationships in terms of
a directed acyclic graph of simple operations. The physics evaluator functions typically
operate on a workset of elements, and store integrated/evaluated quantities in local field
arrays. Ultimately, when the operations are performed over all worksets, an assembled
finite element discretization of the governing equations results.

Albany uses various Trilinos components to orchestrate the solution process. At a
high level, the Library of Continuation Algorithms (LOCA) can be used to provide for
continuation, displacement and load stepping, bifurcation analysis, etc. The Rythmos
package is used for time integration. Inside these enclosing stepping algorithms, most
problems use some form of a Newton nonlinear solver, supplied by the Trilinos NOX
package. The solution of the resulting linear system is managed by the Stratimikos
package, that allows the user to select from a myriad of linear solvers and preconditioners
available in Trilinos from the Albany input file. In addition to supporting embedded
sensitivity analysis and UQ, Albany also couples to Dakota (Adams et al., 2009) using
the Trilinos TriKota components to provide both coupled and black-box analysis and
UQ capabilities using that package.

It is not our intent to directly compare the approach taken with Albany with other
development strategies and specific examples of other analysis tools. Such a comparison
would require a significant investment in time and resources if it were to be thorough
enough to be of any value to the reader. Further, such comparisons are sufficiently
subjective that the reader may not want to depend on the authors of the package
to present such data and opinion. A natural first approach to design abstraction for
implicit and semi-implicit methods is to separate the finite element assembly process
from the linear and nonlinear solution algorithms. In this case, the assembly tools (e.g.,
basis function library and meshing library) are developed internally to the application
code and the solvers are leveraged from external libraries such as PETSc (Balay et al.,
2013) and Trilinos (Heroux et al., 2005). Examples of codes that fall into this category
are the Differential Equations Analysis Library (deal.II) (Bangerth et al., 2007),
libMesh (Kirk et al., 2006), Life V (Prud’homme, 2007), Sierra (Stewart and Edwards,
2003), and Uintah (de St. Germain et al., 2000). Some projects additionally separate

The Albany Multiphysics Code 4

the assembly process into independently releasable components or rely on external
components. Projects in this class include Albany, the FEniCS project (Logg et al.,
2012), the MOOSE project (Gaston et al., 2009), and the Sundance rapid development
system (Long et al., 2010). The FOOF framework (Yuan and Fish, 2015) provides
a Fortran-based alternative to the above C++ codes, with a focus on applications for
multiphysics systems (see e.g. Michopoulos et al. (2005)), and further includes multiscale
methods (Yu and Fish, 2002) to capture microscale heterogeneity.

In this paper, we discuss our experiences in developing a scientific application code
using a collection of independently developed components. In section 2 we provide
details on how we define the component-based approach, what the scope of the current
effort is, and what some of the advantages and disadvantages of this approach are.

In Section 3 we present details of the design of the Albany code. In particular, we
describe the abstract interfaces between the major design elements of the code and how
they were chosen to maintain modularity. Note that some of the functions live in Albany
and some are contained in Trilinos. While there is not a unique or optimal design for
how to combine different modules possessing abstract interfaces, the current architecture
has not needed substantial refactoring as the number and variety of application areas
supported by Albany has grown since inception.

In Section 4 we highlight two projects being hosted by Albany. The first is a
computational mechanics research and development platform, supporting research in
constitutive models, solution and preconditioning methods, discretizations, full coupling
of mechanics to scalar equations, material models, and failure and fracture modeling.
The second is a quantum device design and analysis capability, where nonlinear Poisson
and coupled Schrodinger-Poisson systems are used for designing quantum dots, the
building blocks of quantum computers. The success of these projects in quickly fielding
new application codes with rich feature set and analysis capabilities indicates the
strength of the component-based approach that is the basis for the Albany code.

2. The Component-Based Application Development Strategy

The Albany code was written to demonstrate a component-based strategy for application
code development. Component-based development is the process by which an
application code is built primarily from modular pieces, such as independently developed
software libraries, abstract class hierarchies, and template based generic classes. The
approach involves assembling components from four classes of software: libraries,
interfaces, software quality tools, and demonstration applications, which form the
foundation for the new code. There are several benefits to this approach, discussed
in detail below.

The use of libraries and frameworks is common in scientific application development.
Almost all scientific codes call specialized libraries, such as the BLAS, LAPACK, mesh
databases, etc, to a degree. Some applications use libraries more strongly, calling linear
and nonlinear solvers, preconditioners, etc., from widely available numerical analysis

The Albany Multiphysics Code 5

toolkits. The pattern for the use of libraries typically involves the use of a function
call, passing basic or fundamental data types (integers, double precision values, or
arrays of integer or double precision numbers) to interface with an archive or object file.
These functions are called from the main code to perform operations on the function
arguments. In component-based development, the application typically consists of “glue
code” that connects together interfaces or instances of the components. In our case,
this glue code accounts for less than ten percent of the overall code that makes up
the application. Further, the components are generic in nature, designed to support
classes of applications to enable reuse for multiple projects. These components are often
constructed using inheritance hierarchies or using template based generic programming
to better support such reuse. Finally, the interfaces between components less often use
a functional form; they typically employ more advanced patterns (Gamma et al., 1995)
such as factories, adapters, decorators, and/or observer patterns. Where library-based
development typically passes lower-level information, such as arrays, lists, and simple
structures of data to and from the library code, components will employ more advanced
communication using generic abstractions like observers, factories, and evaluators.

A framework design is another form of application design, where a “driver”
framework is used to connect with user application modules through published
interfaces. In this case, reuse is achieved by employing the driver framework for
several different applications, changing only the user code modules that provide the
“personality” of the resulting application.

2.1. Computational Science Component Libraries

Generic components are generally grouped to form “component libraries,” or just
“libraries” for brevity. We recognize that overloading of the word “library” might cause
confusion, we will explicitly state when we are referring to the conventional use of the
term.

Figure 1 enumerates individual computational capabilities that can be deployed as
independent libraries, and made available as building blocks for new application codes.
The capabilities are grouped in a logical manner, which not only serves to organize the
presentation but, as will be discussed later, also shows where opportunities exist for the
definition of abstraction layers around clusters of related libraries. Many of the listed
components shown in the figure represent a set of capabilities, in that there are multiple
independent libraries that provide competing or complimentary capabilities in the listed
capability area (e.g., preconditioners).

The granularity of the definition of an independent library is a software design
decision, where the extremes (having all capabilities contained within one monolithic
framework or having every C++ class an independent library) are obviously sub-optimal.
For this description, which has a direct correlation to the development of independent
packages in the Trilinos suite, a library is typically constructed by one to three domain
experts. This level of effort is small enough that the lead developers can know and

The Albany Multiphysics Code 6

understand the entire code base of each package. In this definition, an existing library
may be separated into a set of smaller independent pieces if the common usage involves
only a subset of the capabilities contained in the original library. For instance, a library
that contains both a GMRES linear solver and an ILU preconditioner would be split into
two separate libraries since we would want to enable the use of the ILU preconditioner
with any iterative linear solver.

2.2. Software Quality Tools

Software quality tools and processes are central to the productivity of code teams. The
benefits of these tools increase significantly as project teams grow in the number of
developers and become geographically distributed. In Figure 2, we present a list of
software quality tools which enhance productivity of a code project like Albany. With
software quality toolsets, it is not necessary to use all the capabilities to realize benefits.

For computational science organizations, there is a significant benefit in sharing the
same sets of tools and processes across many software projects. With a decrease in each
project-specific learning curve, staff members have more agility to make an impact on
multiple projects. For this reason, the Albany project has largely adopted the set of
tools used by the Trilinos project.

2.3. Advantages and Disadvantages of Component-Based Code Design

With our experience in Albany and other application codes that use Trilinos libraries, we
have noted significant advantages and some disadvantages in using the component-based
approach to code design. These span both technical and social issues, and are influenced
by the organizational culture, funding, and several other factors. A more extensive
discussion of component-based design is presented in a technical report (Salinger, 2012).

Advantages of a component-based approach to application development include:

(i) The costs of writing, verifying, maturing, extending, and maintaining a library is
amortized over multiple projects.

(ii) Shared support of an algorithmic capability over several projects allows the pooling
of a critical mass of funding for a subject matter expert to develop significant
expertise and software capabilities in a targeted area.

(iii) By using the algorithmic library, the application code development team can gains
ongoing access to the expertise of the library developer.

(iv) The use of general-purpose libraries developed externally to an application code
forces the code to adopt a more modular design. This can result in more flexiblity
and extensibility of the application in the long run.

(v) The use of libraries decreases the code base that must be maintained by the
application team. The finer granularity of this approach creates natural divisions
between code appropriate for open source release and code that must be protected

The Albany Multiphysics Code 7

(e.g., for intellectual property or export control reasons), decreasing the amount of
code that requires protection.

(vi) The use of abstract interfaces around groups of related capabilities facilitates the
implementation and investigation of alternative algorithms. Using an example from
Trilinos, several direct and iterative solvers share the same interface and can be
selected in Albany at run time from the input file.

(vii) The effort to create abstract interfaces that support multiple concrete
implementations improves the extensibility and flexibility of the code. Creating
an abstract layer between the mesh database and the mesh data structures used in
the PDE assembly enables us to flexibly use multiple mesh databases with minimal
impact on the code.

In contrast with a monolithic application code that contains all required the
algorithms as part of the application, disadvantages of a component-based approach
include:

(i) The use of numerous Third-Party Libraries can complicate the build process. It can
be particularly difficult to keep track of what versions of libraries are compatible
with each other.
We mitigate this complexity in three ways. First, we heavily use component libraries
from Trilinos, which synchronizes the release of its numerous (> 50) libraries.
Albany also links to a collection of parallel unstructured mesh and adaptation
component libraries contained within the Rensselaer Polytechnic Institute (RPI)
Scientific Computation Research Center (SCOREC) toolset (Seol et al., 2012).
Second, we employ a “CMake Superbuild” (i.e., the TriBITS build system of Bartlett
et al. (2012)), that manages dependencies between the component libraries and the
overall build complexity. Third, we employ (near) “continuous integration” (Booch,
1991) where the builds and tests of all the tightly-coupled component libraries are
performed frequently (at least nightly; see Brown and Canino-Koning (2015) and
the Albany CDash site (Hansen et al., 2015)).

(ii) When debugging the application, developers on the application code development
team may have difficulty tracking down issues in unfamiliar components and may
not have ready access to the component developer.

(iii) Abstract interfaces that compartmentalize the code are difficult to design and
require a different skill set to construct. Such skills may not be present on the
application development team.

(iv) General purpose libraries with an improper interface design can lead to applications
that do not perform optimally (e.g., performing unnecessary data copies) and have
unnecessarily high memory requirements.

(v) The dependence on external components can significantly impact the deployment of
an application to novel or advanced platforms. For example, the porting of a code
from traditional CPU cores to general purpose graphics processing units (GPGPUs)

The Albany Multiphysics Code 8

requires that many components be rewritten to support that architecture. Even
if some components support the architecture, it may not be possible to run the
application on the new hardware until all, or a large subset of components provide
that support.

The application development projects described in Section 4, together with the
regression test suite and other development efforts using Albany, provides anecdotal
experience that the component-based approach has net benefits. In particular, the
ability to rapidly add new algorithms and capabilities by making use of pre-existing
component libraries has been apparent in a wide variety of projects. The other strength
of this approach is that it demonstrates an accelerated development process that builds
on experience; the more that libraries are developed and matured, the more rapidly the
next application using those libraries can be constructed and verified. This can yield
significant strategic return on investment across a computational science organization
but it may be of less immediate value within an individual code project.

3. Albany Component-Based Code Design

The Albany code was developed to refine, demonstrate, and evaluate the component-
based code design strategy. This section summarizes the design of the Albany driver
application and some of the components that were used in its construction. We will also
state remaining gaps in the component-based development strategy. Along the way,
simple heat transfer and incompressible flow proxy applications were supplanted by
independently-funded application projects as the development drivers (see Section 4).
We also discuss interface design aspects of Albany, detailing where we have placed
abstract interfaces to gain access to general-purpose libraries and to maintain the
flexibility and extensibility of a modular design.

Albany is designed to compute approximate solutions to coupled problems
represented abstractly as

L(u̇(x, t), u(x, t)) = 0, x ∈ Ω, t ∈ [0, T], u̇, u ∈ H, (1)

where Ω ⊂ Rd (d = 1, 2, 3) and [0, T] are the spatial and temporal domains, L is
a (possibly nonlinear) differential operator, H is a Hilbert space of functions upon
which L is defined, u is the (unknown) PDE solution, and u̇ its corresponding time-
derivative. Equation 1 is then discretized in space via the (generally unstructured grid)
finite element method resulting in the finite-dimensional differential-algebraic (DAE)
system

f(u̇(t),u(t),p) = 0, (2)

where u ∈ Rn is the unknown solution vector, u̇ ∈ Rn is its time derivative, p ∈ Rm

is a set of model parameters, and f : R2n+m → Rn is the DAE residual function. In
Albany, we have focused on fully-implicit solution algorithms which require evaluating

The Albany Multiphysics Code 9

and solving linear systems involving the Jacobian matrix

α
∂f

∂u̇
+ β

∂f

∂u
, (3)

and thus accurate and efficient evaluation of these derivatives is critical.
In addition to computing the approximate solution u(t) one is also often interested

in evaluating functionals of the solution

s(t) = g(u(t),p), (4)

which we call responses. Values of response functions at discrete time points are
often targets of sensitivity and uncertainty analysis, as well having utility as objective
functions in optimization, design, and calibration problems. Many of these methods
entail evaluation of derivatives of the responses s with respect to the model parameters p,
and often the performance of these methods is greatly improved when these derivatives
are evaluated accurately. For steady-state problems, the response gradient can computed
via the formula

ds

dp
=
∂g

∂u
(u∗,p)

du∗

dp
+
∂g

∂p
(u∗,p)

= −∂g
∂u

(u∗,p)

((
∂f

∂u
(u∗,p)

)−1
∂f

∂p
(u∗,p)

)
+
∂g

∂p
(u∗,p),

(5)

where u∗ satisfies f(u∗,p) = 0. The necessity to quickly and accurately evaluate
derivatives such as ∂f/∂u and ∂f/∂p (as well as other quantities such as polynomial
chaos coefficients) needed by analysis algorithms, as well as to support an extensible
interface for supplying these quantities to higher-level analysis algorithms, has dictated
many of the code design decisions described below.

3.1. Overall Albany Code Design

At a high level, the code is separated into five main algorithmic domains separated by
abstract interfaces, as shown in Figure 3. These domains will each be discussed in detail
in the following sections.

A key part of the Albany code is depicted as ‘Glue Code’ in this figure, which is the
driver code that integrates the components to provide the overall, physics independent
code capability. It depends on a discretization abstraction, which serves as a general
interface to a mesh database and mesh services. As described below in Section 3.2,
this interface deals with linear algebra objects and standard vectors, and is agnostic to
the specific mesh database. The Glue Code also employs a problem class abstraction to
construct the set of PDEs, boundary conditions, and response calculations. As described
in Section 3.3, the assembly of these physics pieces comes down to the evaluation of a
directed graph of computations of field data. The Glue Code then uses these pieces to
satisfy the nonlinear model abstraction (e.g., computing a residual vector or Jacobian
matrix).

The Albany Multiphysics Code 10

With the nonlinear model interface satisfied, the full range of Trilinos solvers are
available. This includes the embedded nonlinear analysis solvers such as nonlinear and
transient methods described in Section 3.4. These embedded nonlinear solvers, in turn,
call the linear solvers (see Section 3.5), which are the most feature rich and mature set
of general purpose libraries used in the code. Albany was designed to demonstrate how
to design a code possessing analysis capabilities significantly beyond repeated forward
simulation, so the nonlinear solver layer is not the top of the code hierarchy. A separate
Analysis layer described in Section 3.6 wraps the solver layer, and performs parameter
studies, optimization, and UQ; primarily using algorithms from the Dakota toolkit
(Adams et al., 2009).

As presented in Figure 2, there are many software tools and processes that
can improve the productivity of a project. Albany has adopted the toolset from
Trilinos to minimize the learning curve that Trilinos developers need to begin
contributing to Albany. These include git for version control, CMake for configuration
management, build, and porting, CTest for regression testing, and Doxygen for
automatic documentation based on the class design and comments. We have adopted
the mailing lists and webpage design from Trilinos as well. We currently have scripts
run under a cron job that perform continuous integration with Trilinos and Dakota that
do a fresh build and regression testing nightly on multiple machines with the results
being placed on a CDash dashboard (Hansen et al., 2015).

3.2. Global Discretization Abstraction and Libraries

A critical component of any finite element code is the mesh framework, which defines
the geometry, element topologies, connectivities, and boundary information, as well as
the field information that lives on the mesh. As with many modern codes, Albany
supports spatial adaptation, where the mesh may change by refining in certain areas,
and perhaps coarsening in others, driven by evolving features and error indicators
computed during the solution. A further complication involves the need to rebalance
the workload between processors as the mesh is modified. Albany accesses the mesh
database, adaptation and load balancing capabilities, together with functions used to
transfer the solution information between mesh representations, using an abstract Global
Discretization interface.

The global discretization abstraction, presented schematically in Figure 4, gives
the finite element assembly process access to the all of the data distribution information
required by the linear algebra objects. In all cases, mesh information is contained in
an in-memory mesh database that is accessed through a specialization of the abstract
Global Discretization interface class. These specializations, unique to each mesh library
Albany supports, provides a set of common services. These include reading and writing
mesh data files present on the file system through I/O routines, providing element
topology and vertex coordinate information, and optionally mesh adaptation, load
balancing, and solution transfer capabilities. Of note is that each mesh library is

The Albany Multiphysics Code 11

different internally and provides services in a unique way. The specialization of the
abstract global discretization class may interpret or “fill in” missing or incompatible
data representations when required.

We note that the placement of the abstract Global Discretization interface is above
the location where a general interface to mesh databases would lie in a domain design.
The design of an abstract interface to mesh databases (e.g., ITAPS, Diachin et al. (2007))
remains a challenge; given the many competing and often contradictory demands of
codes that use explicit or implicit algorithms, static and adaptive meshes, and C++
vs. C or FORTRAN. The interface has methods for the quantities needed directly in
the finite element assembly, such as the Jacobian graph and coordinate information, in
the data structures desired by the assembly. The offset between the mesh database and
the Global Discretization interface is denoted as the Mesh Processing layer in Figure 4.
Functions in this layer satisfy the interface using calls and data structures specific to the
underlying mesh database. We found the use of our Global Discretization abstraction
in place of a generic mesh interface to be a tractable solution for our needs, but the
scheme would only scale to a modest number of mesh databases with distinct interfaces.

Albany currently supports two independent implementations of the discretization
interface; (1) the Sierra ToolKit (STK) package (Edwards et al., 2010) in Trilinos, and
(2) the Parallel Unstructured Mesh Interface (PUMI) (Seol et al., 2012) being developed
by the Scientific Computation Research Center (SCOREC) at Rensselaer Polytechnic
Institute. The STK mesh database can be loaded in several ways: reading of a mesh file
in the Exodus format (typically generated with the CUBIT meshing program), inline
meshing (where the mesh is generated directly in source code) with the Pamgen package
in Trilinos, and simple rectangular meshes directly created in the code base.

In a typical simulation, the interaction with the mesh library begins by Albany
instantiating an object of the desired specialized class (which activates constructors in
the appropriate places in the underlying mesh library), based on the type of input mesh
and geometry files specified by the user. At construction, the mesh library reads the
mesh information in serial or parallel depending on the simulation, and performs the
degree of processing required to service requests from Albany for discretization data. As
the simulation initializes, the Albany Glue Code invokes virtual member functions in the
abstract discretization object to access coordinate data, connectivity, and to read (when
restarting) and write solution data to the specialized class (and underlying library).

For adaptive simulations, there are two additional capability hierarchies that
manage both the mesh adaptation process and the criteria used to determine the degree
of adaptation needed, each Albany time, load, or displacement step. These interfaces
are likewise abstract and specialized to suit the requirements of the mesh adaptation
library specified for the simulation.

Other information that is processed on the mesh and accessed through the abstract
discretization interface includes the multidimensional array that holds the list of
elements on this processor, each with the array of local nodes, and pointers to the
solution vector, coordinate vector, and any other field data stored at the nodes. By

The Albany Multiphysics Code 12

processing the element connectivity information, as well as some local discretization
information (how many unknowns are on a mesh node), the sparse graph of the Jacobian
matrix can be processed. For dealing with overlap (a.k.a., halo or ghosted) information,
several objects have both “owned” and “overlap” versions.

3.3. Problem Abstraction and Finite Element Assembly

Given a finite element mesh as supplied by the abstract discretization components,
the purpose of the problem abstraction and finite element assembly components is to
evaluate the discrete finite element residual, Eq. (2), for the problem at hand, as well
as derived quantities such as Jacobian matrices and parameter derivatives needed for
simulation and analysis. Our scalable approach for finite element assembly is described
elsewhere (Pawlowski et al., 2012a,b). Here we briefly summarize the salient features of
the approach and its use within Albany.

Multiphysics simulation introduces a number of difficulties that must be addressed
by the software framework including managing multiple physics models, adapting
the simulation to different problem regimes, and ensuring consistency of the coupled
residual evaluation with respect to the full system degrees-of-freedom. To manage this
complexity, Albany employs the graph-based evaluation approach (Notz et al., 2012;
Pawlowski et al., 2012a,b) as provided by the Trilinos Phalanx package (Pawlowski,
2015). Here, the residual evaluation for a given problem is decomposed into a set of
terms (at a level of granularity chosen by the developer), each of which is encoded into
a Phalanx evaluator. Each evaluator encodes the variables it depends upon (e.g.,
temperature evaluated quadrature points for a given set of basis functions), the variables
it evaluates (e.g., a material property at those same quadrature points), and the code to
actually compute the term. Phalanx then assembles all of the evaluators for a given
problem into a directed acyclic graph representing the full residual evaluation for a given
set of mesh cells stored in a data structure called the field manager. The roots of the
graph are evaluator(s) that extract degree-of-freedom values from the global solution
vector and the leaves are evaluator(s) that assemble residual values into the global
residual vector. The full finite element assembly then consists of a loop over mesh cells
with the body of the loop handled by the Phalanx evaluation (typically a preselected
number (work set) of cells are processed by each evaluator, to improve performance by
amortizing function call overhead over many mesh cells). This approach improves code
reuse by allowing common evaluators to be used by many problems, improves efficiency
by ensuring each term is only evaluated as necessary, ensures correctness by requiring
all evaluator dependencies are met, and allows a wide variety of multiphysics problems
to be easily constructed. While not required, most terms within Albany employ the
Intrepid package (Bochev et al., 2012) for local cell discretization services such as finite
element basis functions and quadrature formulas. This graph-based evaluation approach
is used by several frameworks for handling multiphysics complexity including the Aria
application code in SIERRA (Stewart and Edwards, 2003), the Drekar code (Smith

The Albany Multiphysics Code 13

et al., 2011), the MOOSE framework (Gaston et al., 2009), and the Unitah framework
(de St. Germain et al., 2000).

One of the design goals of Albany was to provide native support for a wide variety
of embedded nonlinear analysis approaches such as derivative-based optimization and
polynomial chaos-based uncertainty quantification. A significant challenge with these
approaches is that they require calculation of a wide variety mathematical objects such
as Jacobians, Hessian-vector products, parameter derivatives, and polynomial chaos
expansions, all of which require augmentation of the assembly process. This is a
burden on the simulation code developer, which means these approaches are often not
incorporated within the application. This not only limits the impact of these methods
but also limits potential research in new analysis approaches for complex multiphysics
applications. To address these issues, Albany leverages the template-based generic
programming (TBGP) approach (Pawlowski et al., 2012a,b) to provide a framework
for easily incorporating embedded analysis approaches. This technique employs C++
templates and operator overloading to automatically transform code for evaluating the
residual into code for computing the quantities described above, and is an extension of
operator overloading-based automatic differentiation (AD) ideas to the general case of
computing other non-differential objects.

To leverage the TBGP approach, each evaluator in Albany is written as C++
template code, with a general EvalT template parameter. This parameter encodes the
evaluation type, such as a residual, Jacobian, parameter derivative or polynomial chaos
expansion. Each evaluation type defines a scalar type, which is the data type used
within the evaluation itself (e.g., double for the residual evaluation or an AD type for
the Jacobian and parameter derivative). Each evaluator is then instantiated on all of
the supported evaluation types relying on the Sacado (Phipps and Pawlowski, 2012;
Phipps, 2015a) and Stokhos (Phipps, 2015b) libraries to provide overloaded operator
implementations for all of the arithmetic operations required for each scalar type. This
allows the vast majority of evaluators to be implemented in a manner agnostic to the
scalar type and the corresponding mathematical object being computed. Furthermore,
any evaluator can provide one or more template specializations for any evaluation type
where custom evaluation is needed.

Albany leverages template specialization to implement the gather and scatter phases
of the finite element assembly for each evaluation type (see Figure 5). For example, the
residual specialization of the gather operation extracts solution values out of the global
solution vector and the scatter operation adds residual values into the global residual
vector. Likewise, the Jacobian specialization of the gather phase both extracts the
solution values and seeds the derivative components of the AD objects, while the scatter
operation both extracts the dense element Jacobian matrix from the AD objects and
sums their contributions into the global sparse Jacobian matrix. These gather/scatter
evaluators are written once for each evaluation type, are the only place in the code where
a significant amount of new code must be written each time a new derived quantity is
desired by the analysis algorithms. These are written independently of the equations

The Albany Multiphysics Code 14

being solved and are used for all problems. Thus, we have effectively orthogonalized the
tasks of developing new multiphysics simulations from the tasks of incorporating new
nonlinear analysis methodologies. A full description of the Template Based Generic
Programming approach can be found in this pair of publications (Pawlowski et al.,
2012a,b).

3.3.1. Boundary Conditions Correctly and efficiently applying boundary conditions in
multiphysics simulations over complex geometries/domains is also a significant source
of software complexity. Currently, Albany supports simple Dirichlet conditions as well
as a growing list of Neumann boundary condition types such as scalar flux conditions
normal to boundaries, Robin conditions, and various traction and pressure boundary
conditions. Dirichlet conditions are applied in the strong form directly to global linear
algebra objects produced for each evaluation type after the volumetric finite element
assembly by replacing the finite element residual equation for the corresponding nodes
with a Dirichlet residual equation. For example, the Dirichlet condition u(x) = a for
x ∈ ∂ΩD is implemented by replacing the finite element residual values corresponding to
degrees-of-freedom associated with ∂ΩD with u−a. Further, the Jacobian is modified to
place the value of unity in the location corresponding to the degree of freedom and the
remainder of the row is zeroed, and then enforcement of the boundary condition is left to
the nonlinear solver. We have found that this approach is effective for nonlinear analysis
problems such as sensitivity analysis, continuation/bifurcation analysis, optimization,
and uncertainty quantification when the boundary condition must be a parameter in
the problem as it allows for straightforward computation of derivatives with respect to
the boundary condition, but with little additional cost in solver complexity.

The Neumann boundary condition implementation depends on a separate finite
element assembly that performs the finite element surface integrals over the designated
boundaries ∂ΩN . The form of these conditions can vary significantly, some examples
supported by Albany include:

(i) Flux conditions for scalar equations, such as the heat equation. For this case, one
typically wishes to specify a heat flux through a surface ∂ΩN ,

∂T

∂n
(x) = q(x), (6)

for x ∈ ∂ΩN , where n is the unit normal to the boundary ∂ΩN and q(x) is the
specified flux.

(ii) Prescribed tractions on the boundary of mechanics problems,

t = σn = t̄, (7)

on ∂ΩN ; σ is the Cauchy stress tensor, t is the traction vector on the boundary,
and t̄ are the specified traction components. Pressure boundary conditions are a
special case of traction t̄ = −pn, where p is the fluid pressure.

The Albany Multiphysics Code 15

(iii) A Robin condition is a mixed condition taking the form of a weighted combination
of both Dirichlet and Neumann conditions,

au(x) + b
∂u(x)

∂n
= h(x), (8)

on ∂ΩR, where h(x) is the boundary function or constraint being applied, and a

and b are weights. These types of conditions are often called impedance boundary
conditions in electromagnetic problems and insulating boundary conditions in
convection-diffusion problems where one specifies that the convective and diffusive
fluxes sum to zero h(x) = 0, ∀x ∈ ∂ΩR.

In the case of Neumann conditions, the field manager accesses surface and boundary
element information from the abstract discretization interface, and Albany performs
a finite element integration and assembly process over each boundary ∂ΩN defined.
Similar to the element integration process employed elsewhere in Albany, the Intrepid
package is used to integrate the weak form of one of the above expressions over the
portion of each element (the element side) that lies on the boundary. The contribution of
the Neumann integral term for all evaluation type (residual, Jacobian, etc.) is computed
using the same TBGP infrastructure as the volumetric terms.

3.3.2. Responses (Quantities of Interest) An implication of supporting embedded
nonlinear analysis such as embedded optimization is that post-processing of simulation
solution values must now be handled by the simulation code. Furthermore, not only
must the quantities of interest be computed but also derived quantities such as response
gradients. Albany supports a growing list of response functions that employ the
TBGP framework to simplify the evaluation of these quantities. All response functions
implement a simple interface that abstracts the evaluation of the response function
and corresponding derivatives, and simple response functions such as the solution at a
point implement this interface. Many response functions, however, can be written as an
integral of a functional of the solution over some or all of the computational domain.
These response functions employ the field manager described above and implement the
functional as evaluators applied to the corresponding sequence of mesh cells. Generally,
this approach is similar to the finite element assembly process described above except
that response values and derivatives must be reduced across processors when run in
parallel. To handle this complication, the response values for each evaluation type
are reduced across processors before being extracted into their corresponding global
linear algebra data structures using the template interface to MPI provided by the
Teuchos (Thornquist et al., 2015) package in Trilinos.

3.4. Nonlinear Model Abstraction and Libraries

The ‘Nonlinear Model’ abstraction in Figure 3 is a Trilinos class called the
EpetraExt::ModelEvaluator, which we will hereafter refer to as the ModelEvaluator.

The Albany Multiphysics Code 16

More complete documentation of this class and associated functionality is given in a
technical report (Pawlowski et al., 2011). Albany satisfies the ModelEvaluator interface,
making available all the embedded nonlinear analysis solution methods in Trilinos.

The purpose of the ModelEvaluator is to facilitate the use of general purpose
solution and analysis algorithms such as those listed as ‘Solvers’ in Figure 6. For
instance, a general purpose nonlinear solver needs an interface to ask the application
code to compute a residual vector f as a function of a solution vector u in order to solve
the nonlinear algebraic system,

f(u) = 0. (9)

To complete the Newton solution process, the solver needs to query the application for
other quantities, such as a Jacobian matrix or an approximation to the Jacobian for use
in generating a preconditioner. By using a standard interface, sophisticated solution
algorithms can be written that are agnostic to the physics, model, and data structures
that are needed to support the above matrix and vector abstractions. This satisfies the
component design philosophy of making different parts of the development effort (in this
example, the physics description and implementation of nonlinear solution algorithms)
essentially orthogonal to each other.

Beyond this nonlinear solver example, the ModelEvaluator provides an extensible
interface to the application code for the analysis algorithms. As time dependent,
continuation, sensitivity analysis, stability analysis, optimization, and uncertainty
quantification capabilities are desired, the interface requirements grow to involve
dependence on not just the solution vector u but also the time derivative u̇, a set
of parameters p, and the time t. Outputs of the interface includes sensitivities df

dp
as

well as responses (a.k.a., quantities of interest) and response gradients with respect to
u and p.

For Albany to remain useful as a research code, this interface definition needs to
keep pace with the leading edge of algorithmic research and development. The design
has been extended to support the ability to take polynomial expansions of stochastic
random variables as inputs to return polynomial representations of the output quantities
including the residual vector, Jacobian matrix, and responses.

In Albany, we have implemented a variety of these quantities to make use of the
capabilities of the ‘Solvers’ in Figure 6. This single interface is all that is needed by the
Trilinos Piro package. At run time, Piro will then select the desired solver method in
the NOX, LOCA, Rythmos, or Stokhos package, and then subsequently performs the
requested sensitivity analysis.

3.5. Linear Solver Abstraction and Libraries

The next capability described by an abstract interface is the linear solver. The use of
libraries and established interfaces for linear solvers is common in finite element codes.
In Albany, however, there is no need to interface directly to the linear solver, as solves

The Albany Multiphysics Code 17

occur as inner iterations of the nonlinear, transient, continuation, optimization, and UQ
solvers that were presented in the previous section.

For linear solves, there are a wide assortment of direct and iterative algorithms,
and the iterative methods can make use of a variety of algebraic, multi-level, and block
preconditioners. Furthermore, these algorithms can be called in a diversity of ways with
different algorithms being used on various blocks of the matrix, on various levels of the
multi-level method, and isolated to sub-domains of various sizes.

Much of this flexibility is configurable at run time through the use of the Trilinos
Stratimikos package, the linear solver strategies interface. The Stratimikos package
“wraps” the numerous linear algebra objects, solvers, and preconditioners found in
Trilinos using a common abstraction (Thyra), and the approach supports the use of a
factory pattern to create the desired linear solver object. The object is fully configurable
at run time using parameters given in the Albany input file. In Trilinos, this involves
the Ifpack, ML, Amesos, and Teko preconditioning packages and the AztecOO, Belos,
and Amesos solver packages.

In Albany, the majority of the regression test problems employ a GMRES iterative
solver that in turn uses either ILU or multi-level preconditioning. There are examples
of how to use block methods and matrix-free solution approaches may be selected, also
at run time from the input file.

3.6. Analysis Tools Abstraction and Libraries

Present at the top level of the software stack are the analysis tools. These tools
may be used to perform a single forward solve, sensitivity analysis, parameter studies,
bifurcation analysis, optimization, and uncertainty quantification (UQ) runs. The
analysis tools have a common abstract behavior in that they involve repeated calls
to the solvers in Section 3.4 to determine how the solution changes as a function of the
parameter.

The common abstraction layer that the analysis tools conform to (and that is
implemented by the ‘Solvers’), takes parameter values as input and returns responses
and (optionally) response gradients with respect to the parameters as output. The
analysis abstraction interface does not contain references to solution vectors or residuals,
as analysis at this level operates along the manifold of the equations being solved.

The analysis abstraction layer is contained within the Trilinos Piro (Parameters In
Responses Out) package. However, the majority of the specific analysis functionality
actually resides within Dakota; a mature, widely-used, and actively developed software
framework that provides a common interface to a number of analysis, optimization,
and UQ algorithms. Dakota optimization capabilities include gradient-based local
algorithms, pattern searches, and genetic algorithms. Available UQ algorithms
range from Latin hypercube stochastic sampling to stochastic collocation methods
for polynomial chaos approaches. Dakota can be run as a separate executable that
repeatedly launches a given application code, using scripts to modify parameters in

The Albany Multiphysics Code 18

input files. In Albany, Dakota is used in library mode through an abstract interface. A
small Trilinos package called TriKota provides adapters between the Dakota and Trilinos
analysis abstraction classes.

In Albany, a software stack is available to provide analytic gradients to the analysis
tools. The parameters in the PDEs are exposed so that automatic differentiation can
be employed to compute sensitivities of the residual with respect to the parameters.
Likewise, the response functions use automatic differentiation to compute gradients with
respect to the solution vector and parameters. The ‘Solvers’ then use this information,
along with the system Jacobian to compute the gradient of responses with respect to
responses along the manifold of the PDEs being solved, analytically. Currently, Hessian
information is not computed, although much of the infrastructure exists to do so.

4. Albany Applications

Albany’s general discretization interface together with the use of a templated physics
residual abstraction makes it quite suitable to host a wide variety of applications.
Furthermore, it is straightforward to rapidly implement new applications, which is best
demonstrated by the number of different examples contained within the regression test
suite and the number of analysis applications based on Albany. The regression test
suite contains simple to moderately complex problems representing a broad spectrum
of phenomena, including:

• Solid mechanics: elasticity, J2 plasticity, thermomechanics, unsaturated
poroelasticity, thermo-poro-mechanics, diffusion-deformation, reactor fuel cladding
hydride reorientation, gradient damage, rate independent hardening minus recovery
• Fluid mechanics: compressible Navier-Stokes, ice sheet flows, prototype nuclear

reactor model, vortex shedding, Rayleigh-Bernard
• Miscellaneous: Heat equation, Poisson, Schrodinger, Cahn Hilliard / Elasticity,

Poisson-Nernst-Planck

In addition, the type of solution and analysis performed on these applications covers
a broad spectrum:

• steady, transient, continuation / load stepping, embedded Stochastic-Galerkin,
sensitivity analysis, stability analysis, and uncertainty propagation.

There are several analysis projects and simulation activities that have adopted
Albany. Albany is the code base for an Ice Sheet project based on a nonlinear Stokes
equation (Tezaur et al., 2015). It is also being used to extend and mature mesh quality
improvement techniques based on the Laplace Beltrami equations (Hansen et al., 2005)
for ultimate use in arbitrary Lagrangian Eulerian (ALE) analysis codes and to model
the behavior of hydrides of Zircaloy in used nuclear reactor fuel during transport and
handling operations (Chen et al., 2014b).

Within the Abany configure process, each physics capability set can be turned on
or off to support the needs of the user. All applications run from the same executable,

The Albany Multiphysics Code 19

where the physics set is selected at the top of the input file. There is, however, a separate
executable for invoking Stochastic-Galerkin analysis; distinct from deterministic solves.

In the remainder of this section, we highlight the two most mature applications
hosted in Albany. The purpose of these examples is to illustrate to the reader the
diversity of applications that can be supported within Albany, using the component-
based development approach.

4.1. Laboratory for Computational Mechanics

The Laboratory for Computational Mechanics (LCM) project adopted Albany to serve
as a research platform to study issues in fracture and failure of solid materials and
multi-physics coupling. At present, LCM capabilities include quasi-static solution of
the balance of linear momentum with various constitutive models in the small strain
regime, as well as a total-Lagrange, finite deformation formulation. Since many problems
of interest involve multiple physical phenomena, various coupled physics systems have
been implemented in a monolithic fashion.

Abstractions in the code base permit virtual isolation for the application specific
physics developer. Implementation of a physical quantity, such as the strain tensor,
requires virtually no knowledge of the underlying infrastructure or data structures. As
a result, domain specific expertise in writing constitutive models can be leveraged in
an efficient way. To that end a number of constitutive models are available in Albany
that span simple elastic behavior at small strain, through three-invariant models for
geomaterials, and including finite deformation, temperature dependent metal plasticity
models.

Specific implementation of constitutive models is greatly aided by the use of
automatic differentiation, available from the Trilinos Sacado package. Constitutive
response often requires the solution of a set of nonlinear equations that govern the
evolution of the internal state variables local to the integration point. The system of
equations typically becomes more difficult to solve as the physical fidelity of the model
increases. Efficient solution of the local set of equations is often achieved employing an
implicit, backward Euler integration scheme, solved using a Newton-Raphson iterative
scheme, and requiring formulation and construction of the local system Jacobian for
optimal convergence. Implementation of the local system of equations using automatic
differentiation types has two significant advantages. The first is that the computed local
Jacobian provides analytic sensitivities for the Newton iteration, resulting in optimal
local convergence. The second advantage is that model changes do not require the re-
derivation and re-implemenation of the local Jacobian, saving substantial development
time that can instead be spent on model verification and evaluation. An example
calculation using a constitutive model that employs this strategy can be seen in Figure 9,
where a Gurson type constitutive model with a set of 4 local independent variables is
solved at each integration point.

The existence of the load stepping capability, available through the continuation

The Albany Multiphysics Code 20

algorithms contained in the Trilinos Library of Continuation Algorithms (LOCA)
package (Salinger et al., 2005), allows for the solution of boundary value problems
with nonlinearities in both the material and geometric sense. In addition, the stepping
parameter can be adaptively selected based on characteristics of the current solution.
For example, this adaptive step refinement is essential for the robust solution of
problems experiencing a plastic localization, where convergence is difficult to achieve
and smaller continuation steps are required. Mechanics development can leverage this
adaptive stepping capability without the need for domain expertise in its formulation
and implementation, providing great value for the mechanics researcher.

From the perspective of the LCM application team, a strength of Albany is the
ease in which coupled systems of PDEs can be implemented. This team has formulated,
implemented, and demonstrated several coupled physics problems including thermo-
mechanics, hydrogen diffusion-mechanics, and poro-mechanics. Each of these physics
sets was implemented in a fully coupled sense and solved in a monolithic fashion with
analytic Jacobian sensitivities provided by the automatic differentiation of the system
residual. In particular, the graph based assembly can explicitly show dependencies and
can be a tremendous aid during model development and debugging. Example results
from the thermo-mechanics problem can be seen in Figure 10.

A demonstration of the poro-mechanics capabilities, outlined in Sun et al. (2013),
and applied to a geomechanical footing problem can be seen in Figure 11. As detailed
in Sun et al. (2014), we chose a formulation that solves for the displacement vector and
the pore pressure as primitive variables. The Galerkin weak form is stabilized via a
polynomial projection method such that equal-order basis functions can be used. This
model was verified against analytical solution available in the literature and subsequently
used to analyze how fluid diffusion changes the mechanical response of fluid infiltrating
and how solid deformation induces fluid flow in elasto-plastic porous media (Chen et al.,
2014c; Sun et al., 2014).

Another strength of the Albany system design becomes apparent when considering
the scalability of solving the resulting linear systems. The ability to explore the use of
massively parallel solvers and scalable multi-grid preconditioners, such as that provided
by the Trilinos ML package, makes Albany a desirable open source research environment.
The general interface to the ML preconditioner involves obtaining mesh coordinate
information from the abstract discretization interface that supplies information about
the rigid body modes (the null space characteristics) of the system. Currently, Albany
supports computing the number of rigid body modes both with and without the presence
of other coupled solution fields, and the scalability of the preconditioner has been
established up to many millions of degrees of freedom.

In summary, the design of Albany has allowed for the rapid implementation of
the fundamental computational mechanics infrastructure, paving the way for research
efforts into new methods and models. The open source nature of the code base serves
as a foundation for academic collaboration. Successful research ideas are targeted for
transition into Sandia’s internal production analysis codes.

The Albany Multiphysics Code 21

4.2. Quantum Computer Aided Design

The quantum computer aided design (QCAD) project uses Albany to develop a
simulation and design capability for the electronic structure of laterally-gated quantum
dots, to determine their usefulness as qubits in quantum computing devices, and to help
analyze experimental results on such devices (Gao et al., 2013). Such a task is a subset
of semiconductor device simulation. In this case, we are targeting a regime not well
covered by previous tools, specifically low-temperature operation close to absolute zero
Kelvin, and few- or one-electron devices. Albany was chosen because it provided access
to the many finite element, solver, and analysis libraries, and a programming model that
enabled us to efficiently implement several physics sets that our application presents.

Quantum dots are regions in a semiconductor where the local electrostatics allows
“puddles” of electrons to form, typically near a semiconductor-insulator interface. We
often use a silicon metal-oxide-semiconductor (MOS) system, with an additional level
of gates in the insulator to deplete the sheet into puddles that form quantum dots, as
shown in Figure 12. The depletion gates themselves in experimental quantum dots can
have many different and complex three-dimensional (3D) geometries. Figure 13 shows
three examples of typical depletion gate patterns in a top view. The quantum effects
we wish to use to form qubits are most pronounced with few numbers of electrons, and
a major challenge is to design robust enough structures that allow formation of few-
electron dots. This often involves modifying the shapes of the gates and the spacings
between different layers.

The gate voltages dictate Dirichlet boundary conditions along the surfaces of the
regions that form the gates. We have developed and validated three major solvers
of increasing computational complexity. The nonlinear Poisson solver determines
the electrostatic potential profile that results from the gate voltages and other
device parameters in a given device by treating electrons semi-classically, that is,
as classical particles that obey quantum (Fermi-Dirac) statistics. The simplest
formulation facilitates rapid simulations of many designs, which enables fast semi-
classical understanding of device behavior and hence rapid feedback on device designs.
The Schrodinger-Poisson (S-P) solver is a multi-physics model which couples the
nonlinear Poisson solver and a Schrodinger solver in a self-consistent manner to capture
quantum effects in our devices. Finally, the Configuration Interaction solver takes
single-particle solutions from the S-P solver and determines multi-electron solutions
that include quantum interactions between electrons.

The Albany framework has made it straightforward and fast to implement these
QCAD solvers. The general Poisson equation is written as

∇(εs∇φ) = ρ(φ), (10)

where φ is the electrostatic potential to be solved for and ρ(φ) can be a nonlinear
function. The corresponding finite element weak form (leaving out the surface term for

The Albany Multiphysics Code 22

this presentation) ∫
εs∇φ · ∇wdΩ +

∫
ρ(φ)wdΩ = 0, (11)

with w being the nodal basis function and the LHS being defined as residual. To solve
the equation in the Albany framework, we created a concrete QCAD::PoissonProblem
class derived from Albany::AbstractProblem, in which we constructed the residual by
evaluating and assembling each term. The static permittivity εs and the source ρ(φ)

are evaluated in separate QCAD-specific evaluators, while the integrations are done
by general-purpose Albany evaluators. The automatic differentiation (AD) capability,
parallelization, and nonlinear and linear solvers were available without any development
effort for the QCAD projects physics sets. Through parallelism, robustness, and
automation enabled by analysis algorithms, the throughput of quantum dot simulations
increased several orders of magnitude over the previous simulation process that was
being employed.

The Schrodinger-Poisson (S-P) solver self-consistently couples the nonlinear Poisson
solver, above, with a Schrodinger eigensolver. The latter solves a single-particle effective
mass Schrodinger equation

−~2

2
∇(

1

m∗∇ψ) + V (φ)ψ = Eψ. (12)

The weak form of this equation was implemented similar to the implementation of
the nonlinear Poisson solver. The Trilinos eigensolver Anasazi is used to approximate
the leading modes of the discretized eigenproblem after undergoing a spectral
transformation, using infrastructure originally developed for stability analysis (Lehoucq
and Salinger, 2001). The self-consistent loop is done in an aggregate ModelEvaluator,
which splits the S-P problem into Schrodinger and Poisson sub-problems and calls the
corresponding solve to solve each, as illustrated in Figure 14. The iteration is continued
until a pre-defined convergence criterion is satisfied.

A large part of the code development for the QCAD project is to compute
application-specific response functions. We have coded several responses for our
quantum devices, including average value and integral of a field in a given region. One
particular response that has been crucial for our devices is finding the saddle path
between two minima. The saddle path searching algorithm is fairly complicated and
it was relatively easy to fit into the Albany response framework. The AD capability is
critical for computation of gradients of responses.

Another key element to the process of developing the QCAD code was the additional
packages integrated in the Albany workflow. In particular, the Cubit mesh generator
(Hanks et al., 2013) and the Dakota optimization & UQ package (Adams et al., 2009).
Albany supports a variety of finite element topologies such as quadrilateral and triangle
in 2D, hexahedron and tetrahedron in 3D. The code is written for arbitrary nodal
discretization order, though only linear and quadratic basis functions have been accessed.
The code can import the meshed from the ExodusII (Sjaardema et al., 2013) format,

The Albany Multiphysics Code 23

which is generated by Cubit. This capability allows us to use Cubit to create highly
non-uniform 3D tet meshes, since our structures often have complex 3D shapes as shown
in Figure 13. The Dakota package available to Albany via the TriKota interface provides
various optimization options that have been extremely useful in optimizing complicated
targets for our devices.

An example of the type of optimization we performed is given in Figure 15. We
wished to optimize a quantum dot to contain exactly two electrons, with tunable tunnel
barriers in and out of the dot region, between the left and right electrons of the dot,
and with the channels on the sides also having tunable tunnel barriers. The voltages
on all gates (shown from a top view on the lefts side of Figure 15) are allowed to vary
as design parameters, with the left/right symmetry in the gate voltages imposed as
a constraint. The right side of Figure 15 shows the resulting electron density after
Dakota found the optimal voltages that satisfied all the targets. This was performed
by repeatedly calling the nonlinear Poisson solver for the response and analytically-
computed gradients. The red region is the “sheet" of electrons, and the blue regions
have few electrons and somewhat follow the shapes of the depletion gates. The quantum
dot itself is the narrow curved region underneath the gate labeled TP in the left.

In summary, the numerous capabilities that Albany provides enable us to rapidly
develop application-focused QCAD solvers. The resulting design tool has many more
functionalities than we had proposed at the beginning of the project. As a result,
QCAD simulations have become an integral part of the experimental effort in silicon
qubit design.

5. Conclusions

In this paper, we have articulated a strategy for the construction of computational
science applications that promotes the use of reusable software libraries, abstract
interfaces, and modern software engineering tools. We believe that the component-based
application development model proposed here has a strong potential for success, due to
our experiences with Albany and other Trilinos capabilities cited. There are significant
advantages to the degree of software reuse that well-designed components can offer,
along with the use of generic physics interfaces supported with template-based generic
programming methods and the analysis capabilities that are enabled by their use. It
remains common, however, for application codes to make limited use of external libraries.
Some of the reasons include the learning curve of using (and debugging) someone else’s
code, difficulties in maintaining compatible versions and in porting, and the challenges
with interfacing a collection of different libraries.

Many of these issues have been overcome in the Trilinos suite. The libraries built in
Trilinos share a common build system and release schedule. Where possible, independent
capabilities that should work together, like a nonlinear solver inside of an implicit time
integrator, provide a general interface. Also, many capabilities that are typically used
in a similar way, such as linear solvers and embedded nonlinear analysis tools, can be

The Albany Multiphysics Code 24

called with the same interface and selected at run time through a factory pattern.
We have built the Albany finite element code attempting to follow, and test

the efficacy of, the component-based strategy, and making use of the broad set of
computational capabilities in Trilinos. In Section 3 we provided an overview of the
software design and abstractions important in the development of Albany, an extensible
generic unstructured-grid, implicit, finite element application code. The design is
modularized with abstract interfaces, where we have shown that we can independently
replace physics sets, mesh databases, linear solvers, nonlinear solvers, and analysis tools,
to achieve the ultimate application goals. Independently-developed Trilinos libraries
contribute to the code capabilities. The bulk of the Albany code base is devoted to the
equations and response functions that describe the application.

The evidence presented on the success of this approach and our implementation
comes from two applications that have been built in the Albany code base, that
were presented in Section 4. The feedback from these development efforts is that it
is straightforward to rapidly develop sophisticated parallel analysis codes employing
advanced discretizations, high performance linear solvers and preconditioners, a wide
range of nonlinear and transient solvers, and sophisticated analysis algorithms, using
the proposed methodology. The LCM code has been able to explore fully-coupled
solution algorithms for mechanics coupled with additional scalar equations. By writing
tensor operations in an independent library that is templated to allow for automatic
differentiation data types, the project demonstrated that one can quickly investigate
new models. In less than 2 years of effort, the QCAD project was able to improve their
throughput by several orders of magnitude, leading to a new workflow where a tentative
design is thoroughly investigated by a running a suite of optimization runs on a high-
fidelity model, instead of manually exploring a limited number of forward simulations.
Using this capability, the project has been successful in incorporating computational
analysis into the design cycle used by experimentalists.

Acknowledgements

The Albany code builds on a wide variety of computational science capabilities; we
would like to acknowledge the contributions of the authors of these libraries and tools.
There are several who directly impacted the component-based code design strategy and
the Albany code base, including Mike Heroux, Jim Willenbring, Brent Perschbacher,
Pavel Bochev, Denis Ridzal, Carter Edwards, Greg Sjaardema, Eric Cyr, Julien Cortial,
Brian Adams, and Mike Eldred. In addition, this effort has had significant management
support, including that of David Womble, Scott Collis, Rob Hoekstra, Mike Parks, John
Aidun, and Eliot Fang.

This work was funded by the US Department of Energy through the NNSA
Advanced Scientific Computing (ASC) and Office of Science Advanced Scientific
Computing Research (ASCR) programs, and the Sandia Laboratory Directed Research
and Development (LDRD) program.

REFERENCES 25

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

Corresponding author: Andrew G. Salinger, Sandia National Laboratories, Numerical
Analysis and Applications Department, PO Box 5800 MS-1318, Albuquerque, New
Mexico, 87185, USA. agsalin@sandia.gov.

References

References

Adams, B., W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred, D. Gay, K. Haskell, P. Hough,
and L. Swiler, 2009: DAKOTA, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis: Version 5.0 user’s manual. Tech. Rep. SAND2010-2183, Sandia National
Laboratories. Updated December 2010 (Version 5.1) Updated November 2011 (Version
5.2) Updated February 2013 (Version 5.3).

Balay, S., J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, 2013: PETSc users manual.
Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National Laboratory.

Bangerth, W., R. Hartmann, and G. Kanschat, 2007: deal.ii : A general-purpose
object-oriented finite element library. ACM Trans. Math. Softw., 33 (4), doi:
10.1145/1268776.1268779, URL http://doi.acm.org/10.1145/1268776.1268779.

Bartlett, R. A., M. A. Heroux, and J. M. Willenbring, 2012: Tribits lifecycle model.
SAND Report SAND2012-0561, Sandia National Laboratories.

Bochev, P., H. Edwards, R. Kirby, K. Peterson, and D. Ridzal, 2012: Solving PDEs
with Intrepid. Scientific Programming, 20 (2), 151–180.

Booch, G., 1991: Object Oriented Design with Applications. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA.

Brown, C. T., and R. Canino-Koning, 2015: Continuous integration. http://aosabook.
org/en/integration.html.

Chen, Q., J. T. Ostien, and G. Hansen, 2014a: Automatic differentiation for
numerically exact computation of tangent operators in small- and large-deformation
computational inelasticity. TMS 2014 Supplemental Proceedings, John Wiley &
Sons, Inc., 289–296, doi:10.1002/9781118889879.ch38, URL http://dx.doi.org/10.
1002/9781118889879.ch38.

Chen, Q., J. T. Ostien, and G. Hansen, 2014b: Development of a used fuel
cladding damage model incorporating circumferential and radial hydride responses.
Journal of Nuclear Materials, 447 (1-3), 292–303, doi:http://dx.doi.org/10.

REFERENCES 26

1016/j.jnucmat.2014.01.001, URL http://www.sciencedirect.com/science/article/pii/
S0022311514000026.

Chen, Q., W. Sun, and J. T. Ostien, 2014c: Finite element analysis of hydro-mechanical
coupling effects on shear failures of fully saturated collapsible geomaterials. American
Society of Civil Engineers, GeoShanghai, Shanghai, China, 688–698.

de St. Germain, J. D., J. McCorquodale, S. G. Parker, and C. R. Johnson, 2000:
Uintah: A massively parallel problem solving environment. Ninth IEEE International
Symposium on High Performance and Distributed Computing, IEEE, 33–41, URL
http://software.sci.utah.edu/uintah.html.

Diachin, L., A. Bauer, B. Fix, J. Kraftcheck, K. Jansen, X. Luo, M. Miller, C. Ollivier-
Gooch, M. S. Shephard, T. Tautges, and H. Trease, 2007: Interoperable mesh and
geometry tools for advanced petascale simulations. Journal of Physics: Conference
Series, 78 (1), 012 015, URL http://stacks.iop.org/1742-6596/78/i=1/a=012015.

Edwards, H. C., A. B. Williams, G. D. Sjaardema, D. G. Baur, andW. K. Cochran, 2010:
SIERRA toolkit computational mesh conceptual model. Tech. Rep. SAND2010-1192,
Sandia National Laboratories.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, 1995: Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Gao, X., E. Nielsen, R. P. Muller, R. W. Young, A. G. Salinger, N. C. Bishop, M. P. Lilly,
and M. S. Carroll, 2013: Quantum computer aided design simulation and optimization
of semiconductor quantum dots. J. Appl. Phys., 114 (16), 164 302.

Gaston, D., C. Newman, G. Hansen, and D. Lebrun-Grandie, 2009: Moose: A
parallel computational framework for coupled systems of nonlinear equations. Nuclear
Engineering and Design, 239 (10), 1768–1778.

Hanks, B., and Coauthors, 2013: Cubit web site. http://cubit.sandia.gov/.

Hansen, G., A. Zardecki, D. Greening, and R. Bos, 2005: A finite element method for
three-dimensional unstructured grid smoothing. J. Comput. Phys., 202 (1), 281–297.

Hansen, G., and Coauthors, 2015: Albany CDash CI site. http://my.cdash.org/index.
php?project=Albany.

Heroux, M. A., R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. B. Williams, and K. S. Stanley,
2005: An overview of the Trilinos project. ACM Trans. Math. Softw., 31 (3),
http://trilinos.sandia.gov/.

Kirk, B. S., J. W. Peterson, R. H. Stogner, and G. F. Carey, 2006: libMesh: A C++
library for parallel adaptive mesh refinement/coarsening simulations. Engineering with
Computers, 22 (3–4), 237–254, http://dx.doi.org/10.1007/s00366-006-0049-3.

Lehoucq, R. B., and A. G. Salinger, 2001: Large-scale eigenvalue calculations for

REFERENCES 27

stability analysis of steady flows on massively parallel computers. International
Journal of Numerical Methods in Fluids, 36 (1), 309–327.

Logg, A., K.-A. Mardal, G. N. Wells, and Coauthors, 2012: Automated Solution
of Differential Equations by the Finite Element Method. Springer, doi:10.1007/
978-3-642-23099-8.

Long, K. R., R. C. Kirby, and B. G. van Bloemen Waanders, 2010: Unified embedded
parallel finite element computations via software-based fréchet differentiation. SIAM
J. Scientific Computing, 3323–3351.

Michopoulos, J. G., C. Farhat, and J. Fish, 2005: Modeling and simulation of
multiphysics systems. Journal of Computing and Information Science in Engineering,
5 (3), 198–213.

Notz, P. K., R. P. Pawlowski, and J. C. Sutherland, 2012: Graph-based software
design for managing complexity and enabling concurrency in multiphysics PDE
software. ACM Trans. Math. Softw., 39 (1), 1–21, doi:10.1145/2382585.2382586, URL
http://doi.acm.org/10.1145/2382585.2382586.

Pawlowski, R., 2015: Phalanx web site. http://trilinos.sandia.gov/packages/phalanx/.

Pawlowski, R. P., R. A. Bartlett, N. Belcourt, R. W. Hooper, and R. C. Schmidt, 2011:
A theory manual for multi-physics code coupling in LIME. Tech. Rep. SAND2011-
2195, Sandia National Laboratories.

Pawlowski, R. P., E. Phipps, and A. G. Salinger, 2012a: Automating embedded analysis
capabilities and managing software complexity in multiphysics simulation, Part I:
Template-based generic programming. Scientific Programming, 20, 197–219.

Pawlowski, R. P., E. T. Phipps, A. G. Salinger, S. J. Owen, C. M. Siefert, and M. L.
Staten, 2012b: Automating embedded analysis capabilities and managing software
complexity in multiphysics simulation part II: application to partial differential
equations. Scientific Programming, 20 (2), 327–345.

Phipps, E., and R. Pawlowski, 2012: Efficient expression templates for operator
overloading-based automatic differentiation. Recent Advances in Algorithmic Differ-
entiation, S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, Eds., Lecture
Notes in Computer Science, Springer, 309–319.

Phipps, E. T., 2015a: Sacado web site. http://trilinos.sandia.gov/packages/sacado/.

Phipps, E. T., 2015b: Stokhos web site. http://trilinos.sandia.gov/packages/stokhos/.

Prud’homme, C., 2007: Life: Overview of a unified C++ implementation of the finite
and spectral element methods in 1D, 2D and 3D. Applied Parallel Computing. State
of the Art in Scientific Computing, Springer, Lecture Notes in Computer Science, Vol.
4699, 712–721.

Salinger, A. G., 2012: Component-based scientific application development. Tech. Rep.
SAND2012-9339, Sandia National Laboratories.

REFERENCES 28

Salinger, A. G., E. A. Burroughs, R. P. Pawlowski, E. T. Phipps, and L. A. Romero,
2005: Bifurcation tracking algorithms and software for large scale applications. Int J
Bifurcat Chaos, 15 (3), 1015–1032.

Seol, S., C. Smith, D. Ibanez, and M. Shephard, 2012: A parallel unstructured
mesh infrastructure. High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, 1124–1132, doi:10.1109/SC.Companion.2012.135.

Sjaardema, G., and Coauthors, 2013: Exodus web site. http://sourceforge.net/projects/
exodusii/.

Smith, T. M., J. N. Shadid, R. P. Pawlowski, E. C. Cyr, and P. D. Weber, 2011:
Reactor core subassembly simulations using a stabilized finite element method. The
14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-
14, Toronto, Ontario, Canada.

Stewart, J. R., and H. C. Edwards, 2003: The SIERRA framework for
developing advanced parallel mechanics applications. Large-Scale PDE-Constrained
Optimization, L. T. Biegler, M. Heinkenschloss, O. Ghattas, and B. van
Bloemen Waanders, Eds., Lecture Notes in Computational Science and Engineering,
Vol. 30, Springer Berlin Heidelberg, 301–315, doi:10.1007/978-3-642-55508-4_18,
URL http://dx.doi.org/10.1007/978-3-642-55508-4_18.

Sun, W., Q. Chen, and J. T. Ostien, 2014: Modeling the hydro-mechanical responses
of strip and circular punch loadings on water-saturated collapsible geomaterials. Acta
Geotechnica, 9 (5), 903–934.

Sun, W., J. T. Ostien, and A. G. Salinger, 2013: A stabilized assumed deformation
gradient finite element formulation for strongly coupled poromechanical simulations
at finite strain. International Journal for Numerical and Analytical Methods in
Geomechanics, 37 (16), 2755–2788.

Tezaur, I. K., M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price, 2015:
Albany/FELIX: A parallel, scalable and robust finite element higher-order Stokes
ice sheet solver built for advance analysis. Geoscientific Model Development, 8 (4),
1197–1220.

Thornquist, H., and Coauthors, 2015: Teuchos web site. http://trilinos.sandia.gov/
packages/teuchos/.

Yu, Q., and J. Fish, 2002: Multiscale asymptotic homogenization for multiphysics
problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic
example problem. International Journal of Solids and Structures, 39 (26), 6429–
6452.

Yuan, Z., and J. Fish, 2015: Nonlinear multiphysics finite element code architecture
in object oriented fortran environment. Finite Elements in Analysis and Design, 99,
1–15.

LIST OF FIGURES 29

List of Figures

FIGURES 30

PDE Terms
Source Terms

Sensitivities

Field Manager
Discretization Library UQ Solver

Nonlinear Solver
Time Integration

Optimization
Local Fill

Mesh Database

Mesh Tools

I/O Management

Input File Parser
Utilities

UQ (sampling)
Parameter Studies

Mesh I/O
Optimization

Geometry Database

Discretizations

Derivative Tools

Adjoints
UQ / PCE

Propagation

Responses

Continuation

Constrained Solves

Sensitivity Analysis
Stability Analysis

Calibration

Parameter List

QOI Computation
Verification

In-situ Visualization
Post Processing

Adaptivity

Model Reduction

Memory Management

MultiPhysics Coupling

Reliability
Communicators

Partitioning
Load Balancing

Analysis Tools
 (black-box)

Physics Fill

Composite Physics

Data Structures

Direct Solvers

Linear Algebra

Architecture-
Dependent Kernels

Preconditioners

Iterative Solvers

Eigen Solver

System UQ

Analysis Tools
 (embedded)

Multi-Level Methods

Inline Meshing

Parameters

Grid Transfers
Quality Improvement

Mesh Database

Solution Database

Runtime Compiler

Derivatives

Search

Checkpoint/Restart

DOF map Multi-Core
Accelerators

Material Models
BCs

Figure 1. Computational science capabilities that can be delivered using component
libraries. Given the availability of these tools, the time required to construct an
analysis code is dramatically reduced, with development time being concentrated in
the Physics Fill box outlined in red.

FIGURES 31

Configuration Mgmt

Mailing Lists
Version Control

Software Quality Tools and Processes

Unit Tests Issue Tracking
Web Pages

Code Coverage
Release Process Performance Tests

Liscensing
Build System

Backups

Verification Tests

Regression Tests

Nightly Test Harness

Figure 2. In addition to computational science libraries, the rapid development of
new application codes is also dependent on the availability and use of an effective set of
software quality tools and processes. These support developer productivity, software
quality, and the longevity of a project.

FIGURES 32

Main

FEM Assembly

Solvers

Field Manager
Derivatives

Albany
Glue Code

Nonlinear
Model

Nonlinear
Transient

Optimization
UQ

Analysis Tools

Iterative
Linear Solvers

 Multi-Level

Mesh Tools

Mesh I/O

Mesh Database

Global
Discretization Application

Linear Solve

Load Balancing

Input Parser

PDE Terms,
BCs,

Responses

Libraries

Interfaces

Albany Code

Mesh
Processing

Discretization

 Legend:

Evaluation
Engine

Problem
Definition

Figure 3. The Albany code is built largely from component libraries (colored boxes
with black font) and abstract interfaces (clear boxes with blue font), and employs
software quality tools (not shown). The bulk of the capabilities come from Trilinos
libraries exposing abstract interfaces. The bulk of the coding effort for a new
application involves writing PDE terms, boundary conditions, and responses.

FIGURES 33

Mesh Tools

Given:
•  Mesh Database

Provide:
•  Coordinates
•  DOF Numbering
•  Boundary Info
•  Solution Map

•  Halo Map
•  Jacobian Graph

•  Halo Graph

Global
Discretization

Mesh
Processing

Mesh Database
Mesh Libraries

Mesh I/O

Adaptivity

Partitioning
Load Balancing

Inline Meshing

Solution Database

Restart

Figure 4. The finite element mesh and related quantities are exposed to the
Albany code through the abstract Global Discretization interface. Depending on the
internal details of the mesh library in use, a specialization of the Global Discretization
class will construct quantities in the layout needed by the rest of the code, such
as coordinates, solution vectors, sparse-matrix graphs, and degree-of-freedom (DOF)
numbering/connectivity information.

FIGURES 34

Shape Opt
PCE

Adjoint
Hessian

Field	 Manager	

Gather (Seed)

FE Interpolation
Compute Derivs

Get Coordinates

Scatter (Extract)

Source Terms

Tangent
Jacobian

Residual

Generic	 Template	 Type	 used	
for	 Compute	 Phase	

<EvalT>

PDE Terms

Template	 Specializa<ons	 for	
Seed	 and	 Extract	 phases:	

Legend:	

Properties

Global	 Data	 Structures	

Local	 Data	 Structures	

Figure 5. The finite element assembly in Albany relies on the template-based generic
programming (TBGP) approach and a graph-based assembly of individual evaluators
(Pawlowski et al., 2012b). With the TBGP approach, the developer programs the
residual equations and identifies the design parameters. The TBGP infrastructure
and automatic differentiation libraries in Trilinos will then automatically compute
the Jacobian matrix and direct sensitivities. The graph-based approach simplifies
implementation of new models and allows for broad reuse between applications.

FIGURES 35

Solvers

 UQ Solver

Nonlinear Solver
Time Integration

Optimization

Continuation
Sensitivity Analysis
Stability Analysis

Analysis Tools
 (embedded)

Nonlinear Model

Given:
•  Solution
•  Time Derivative
•  Parameters
•  Time
•  Random Variables

Compute:
•  Residual
•  Jacobian Matrix
•  Preconditioner
•  Tangent
•  Responses
•  Response Gradient
•  Stochastic Residual

Figure 6. Access to the embedded solvers in Trilinos requires that Albany satisfy
the Nonlinear Model abstraction. In its simplest form, this abstraction is used
to compute the nonlinear residual f(u). The interface is general to accommodate
the computation of Jacobian operators, user-defined preconditioners, and stochastic
Galerkin expansions.

FIGURES 36

Linear Solvers

Linear Algebra

Linear Solver

Given:
•  Matrix Operator (“A”)
•  RHS Vector (“b”)
•  Matrix Entries (optional)
•  Parameter/Options List

•  tolerance
Compute:

•  Solution (x; with Ax=b)
•  Eigenvalues/vectors

Data Structures

Direct Solvers

Preconditioners

Iterative Solvers

Eigen Solver

Multi-Level Methods

Figure 7. The linear solver abstraction provides full access to all the linear solvers and
preconditioners in Trilinos. A factory class supports run-time solution configuration
through input file options.

FIGURES 37

Analysis Tools

Application

Given:
•  Parameters

Compute:
•  Responses

 (Quantities of Interest)
•  Response Gradient

UQ (sampling)
Parameter Studies

Optimization

Calibration
Reliability

Analysis Tools
 (black-box)

Figure 8. At the top of the Albany computational hierarchy is the Analysis layer,
where unconstrained optimization and UQ may be performed around the embedded
nonlinear analysis solver layer. The interface accepts design parameters and returns
responses (a.k.a., quantities of interest or objective functions) and response gradients.
The embedded solvers are wrapped to satisfy this interface and may be driven by the
‘Analysis Tools.’

FIGURES 38

Figure 9. Contours of stress triaxiality for a notched tube in a state of combined
tension and torsional loading computed with a Gurson type model.

FIGURES 39

Figure 10. Cubic domain fully clamped on x faces to eliminate contraction and given
a prescribed displacement on top and insulated boundaries. Resultant temperature
field stems solely from mechanical source terms.

FIGURES 40

Figure 11. Contours of pore pressure and equivalent plastic strain for a cylindrical
footing.

FIGURES 41

++++++++++++++++++++++++++

Insulator

Accumulation Gate

Semiconductor

e- e- e- e- e- e- e- e- e- e- e- e- e- e-e-

++++++++++++++++++++++++++

Insulator

Accumulation Gate

Semiconductor

e- e- e- e- e- e- e- e- e-

- - - - - -

Figure 12. Cross-section view of a simplified quantum dot device to illustrate
the concept. We can form sheets (“e-") of electrons at a MOS interface using an
accumulation gate with a positive (“+") voltage (left figure). By introducing additional
depletion gates with negative (“-") voltage, we can deplete most of this sheet, leaving
puddles that form quantum dots (right figure).

FIGURES 42

Figure 13. Examples of typical depletion gate patterns in experimental quantum dot
devices in a top view. Each color in the left, middle, and right figures indicates a
metal or polysilicon gate that can be set to a different voltage to form a quantum dot.
The labels on these figures are strings chosen during the meshing process, and used to
associate a boundary condition specification in the Albany input file with each gate.

FIGURES 43

Start

Create Poisson and
Schrodinger sub-solvers

Solve the initial Poisson
sub-problem

Solve the Schrodinger sub-
problem

Solve the coupled Poisson
sub-problem

Check
convergence

Save potential to
Albany::StateArrays

Save eigen-vectors & -values
to Albany::StateArrays

Save potential to
Albany::StateArrays

No
Yes

QCAD ModelEvaluator
(QCAD::Solver)

Figure 14. Schematic diagram showing the Schrodinger-Poisson implementation in
QCAD

FIGURES 44

Figure 15. Optimization of the Ottawa Flat 270 structure. The left figure shows
a top view of the depletion gate configuration for the structure, and the right figure
shows the resulting electron density after optimization was achieved, with a variety of
constraints detailed in the text.

